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Abstract
Multivariate functional data present theoretical and practical complications that
are not found in univariate functional data. One of these is a situation where the
component functions of multivariate functional data are positive and are subject
to mutual time warping. That is, the component processes exhibit a common
shape but are subject to systematic phase variation across their domains in addi-
tion to subject-specific time warping, where each subject has its own internal
clock. This motivates a novel model formultivariate functional data that connect
such mutual time warping to a latent-deformation-based framework by exploit-
ing a novel time-warping separability assumption. This separability assumption
allows for meaningful interpretation and dimension reduction. The resulting
latent deformation model is shown to be well suited to represent commonly
encountered functional vector data. The proposed approach combines a random
amplitude factor for each component with population-based registration across
the components of a multivariate functional data vector and includes a latent
population function, which corresponds to a common underlying trajectory. We
propose estimators for all components of the model, enabling implementation
of the proposed data-based representation for multivariate functional data and
downstream analyses such as Fréchet regression. Rates of convergence are estab-
lished when curves are fully observed or observed with measurement error. The
usefulness of the model, interpretations, and practical aspects are illustrated
in simulations and with application to multivariate human growth curves and
multivariate environmental pollution data.

KEYWORDS
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1 INTRODUCTION

Functional data analysis (FDA) has found important appli-
cations in many fields of research (e.g., biology, ecology,
and economics) and has spawned considerable method-
ological work as a subfield of statistics (Ferraty & Vieu,
2006; Ramsay & Silverman, 2005; Wang et al., 2016). In

particular, the analysis of univariate functional data has
driven the majority of developments in this area such
as functional principal component analysis (Kleffe, 1973),
regression (Cardot et al., 1999; Yao et al., 2005), and clus-
tering (Chiou & Li, 2007; Jacques & Preda, 2014). In this
paper, we develop novel modeling approaches for mul-
tivariate functional data, which consist of samples of a
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finite-dimensional vector whose elements are random
functions (Chiou et al., 2014; Jacques & Preda, 2014) and
have been much less studied. Dimension reduction is a
common approach, withmany studies focusing on extend-
ing univariate functional principal components analysis
to the multivariate case (Happ & Greven, 2018; Han
et al., 2018) and decomposition into marginal component
processes and their interactions (Chiou et al., 2016).
Most methodological work has focused on tradi-

tional amplitude variation-based models for dimension
reduction, whereas phase-variation-based methods for
multivariate functional data have found attention more
recently: Brunel and Park (2014) proposed a method for
estimating multivariate structural means and Park and
Ahn (2017) introduced a model for clustering multivariate
functional data in the presence of phase variation, while
Carroll et al. (2021) combined the notions of dimension
reduction and phase variability through amultivariate ver-
sion of the shape-invariant model (Kneip & Engel, 1995),
in which component processes share a common latent
structure that is time-shifted across components. How-
ever, the assumption of a rigid shift-warping framework in
this precursor work imposes amajor parametric constraint
on the warping structure, and often the class of models
that only feature simple shifts between the components
is not rich enough for many real-world data. Our main
contribution is a less-restrictive alternative approach, in
which time characterization of individual-specific tem-
poral effects and component-specific effects is achieved
through a fully nonparametric deformation-based
model.
A major motivation for this framework is that in many

contexts, the component functions of a multivariate data
vector may share a common structure that is subject to
variation across modalities; the fundamental shape of
growth curves is similar but not identical when studying
timing patterns across body parts, for instance. A reviewer
suggested to alternatively align the components for each
subject in a constrained way; we demonstrate in this
paper that an overall more compelling model is obtained
by assuming that a latent common curve is present at
the population level, which brings with it the benefits
of dimension reduction and a principled and novel
representation of mutually time-warped functional data.
The proposed latent curve model introduces a shared

shape-based model along with a characterization of
individual- and component-level variation and allows for
flexible and nuanced component effects. This ensures
broad viability of the proposed approach and improved
data fidelity when describing component-specific effects,
which inform the timedynamics of a larger systematwork.
To this end, we introduce a representation of multivari-
ate functional data using tools from time warping (Marron

et al., 2015) and template deformation modeling (Bigot
et al., 2009; Bigot & Charlier, 2011).
The organization of this paper is as follows. Section 2

discusses existing approaches for univariate curve regis-
tration and introduces the proposed latent deformation
model (LDM) for component-warped multivariate func-
tional data. We derive estimators of model components in
Section 3 and illustrate the utility and performance of the
proposed methodology through data analysis in Section 4.
Asymptotic results are established in Section 5, and a dis-
cussion of goodness-of-fit issues and a simulation study
are provided in the Online Appendix, which also contains
auxiliary results and proofs.

2 CURVE REGISTRATION AND THE
LATENT DEFORMATIONMODEL

The main idea of the LDM that we introduce in this paper
is to decompose multivariate phase variation into subject-
specific and variable-specific warping components. When
combined with a common, shape-defining template, these
warping functions provide a lower dimensional represen-
tation of the functional vector trajectories while charac-
terizing the subject-level warping and population-wide
patterns in the time dynamics across variables. In addition
to the existence of a template function shared across sub-
jects, the proposed LDM includes a modeling assumption
that each subject has an “internal clock,” which is quan-
tified through a subject-specific warping function. Similar
assumptions have been previously explored in the cross-
component registration paradigm of Carroll et al. (2021),
which however restricted the component-wise phase vari-
ation to simple parametric shift functions. A major con-
tribution of this paper is to widen the class of potential
component warps beyond rigid shifts to allow for more
flexible warping functions, so as to better capture variation
that occurs nonuniformly across the time domain.
Before introducing the detailed mathematical machin-

ery of the model, a brief overview of the general idea is as
follows. We first introduce a flexible and separable compo-
nent structure for warping functions, which are factorized
into subject- and component-specific warpings and then
proceed to develop estimates of these factor warping func-
tions. The first step is to construct consistent estimates
of the subject-specific warping functions that correspond
to the internal clock of each subject. This is done by
considering univariate warping problems for each func-
tional variable separately and then averaging the resulting
estimates of the component warping functions for each
subject, resulting in a consistent estimate of the subject-
specific time-warping function. Eventually, this then leads
to consistent estimates of the underlying latent curve.
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CARROLL and MÜLLER 3

Assuming that time-warped versions of this underlying
latent curve generate the functional vector component-
level distortions, in order to recover it, one component
function is selected at random per subject, discarding
the data from the other components, then aligning these
curves across subjects. Once this consistent estimate of the
underlying template curve has been obtained, consistent
estimates of the component-level distortion functions are
recovered by solving a penalized cost minimization prob-
lem. A schematic of the data-generating mechanism of the
LDM is provided in Figure 1. More detailed descriptions
follow below.

2.1 The univariate curve registration
problem

The classical univariate curve registration problem is char-
acterized by the observation of a sample of curves𝑋𝑖(𝑡), 𝑖 =
1, … , 𝑛, observed on an interval 𝑇, which are realizations
of a fixed template 𝜉(𝑡) subject to variation in their time
domains. This domain variation is characterized by the
monotonic time-warping functions ℎ𝑖(𝑡) that act as ran-
dom homeomorphisms of 𝑇. A classical model for this
scenario is

𝑋𝑖(𝑡) = (𝜉◦ℎ𝑖)(𝑡), for all 𝑡 ∈  , 𝑖 = 1, … , 𝑛. (1)

The goal of curve registration is to estimate the distor-
tions, ℎ𝑖 , which are typically considered nuisance effects,
in order to account for thembefore proceedingwith further
analysis, for example, estimation of 𝜉, functional princi-
pal component analysis, and so forth. A major branch of
time-warping techniques is based on the idea of aligning
processes to some reference curve that carries the main
features that are common across subjects. This reference
curve is referred to as a template function and is employed
by landmark-based registration methods (Kneip & Gasser,
1992; Kneip&Engel, 1995), pairwise curve alignment (Tang
& Müller, 2008), or the Procrustes approach (Ramsay &
Li, 1998), amongmany others. For a comprehensive review
and additional references, we refer to Marron et al. (2015).
While the curve registration literature is varied and

rich in methodology, no single method has prevailed as
a silver bullet in all warping contexts. Indeed, the debate
over desirable properties of existing and future registration
techniques continues and a gold-standard remains elusive.
With this in mind, we emphasize that our aim here is not
to advocate for one alignment method over another, but
rather extend the ideas available for univariate registration
to a multivariate problem with a composite warping func-
tionwith fixed and randomeffects. In practice, any suitable

registration method may be employed in the estimation
step of the proposed LDM (see estimation).

2.2 A unified model for multivariate
time dynamics and time-warping
separability

Let {𝑋𝑗}
𝑝
𝑗=1

denote a generic set of random functions with
each component process 𝑋𝑗 in 𝐿2( ) for an interval  =

[𝑇1, 𝑇2], 𝑇1, 𝑇2 ∈ ℝ. Suppose further that each compo-
nent is positive-valued, that is, 𝑋𝑗(𝑡) > 0 for all 𝑡 ∈  , 𝑗 =
1,… , 𝑝; the assumption of positivity is made to make esti-
mation of model components more straightforward and is
certainly satisfied for applications to growth curves. With-
out loss of generality, we consider the unit domain case
 = [0, 1]. In the following, Greek letters denote fixed,
unknown population quantities, whereas Latin letters
represent random, individual-specific quantities.
The LDM is motivated by situations where the func-

tional forms of the component processes 𝑋𝑗, 𝑗 ∈ {1, … , 𝑝}

(or any subset thereof) exhibit structural similarity, so that
the information inherent in each component may be com-
bined for overall improved model fitting and to estimate
and analyze the mutual time-warping structure. Denot-
ing a random sample from a 𝑝-dimensional stochastic
process by {𝐗𝑖}𝑛𝑖=1, where 𝑿𝑖(𝑡) = (𝑋𝑖1(𝑡), … , 𝑋𝑖𝑝(𝑡))

𝑇 , we
model this shared structure through a latent curve𝜆, which
characterizes the component curves through the relation

𝑋𝑖𝑗(𝐺
−1
𝑖𝑗
(𝑡)) = 𝐴𝑖𝑗𝜆(𝑡), 𝑖 = 1, … , 𝑛, 𝑗 = 1,… , 𝑝, (2)

where 𝜆 is a fixed function, and the random amplitude
factors 𝐴 and random time distortion functions 𝐺 reflect
differences in realized curves across components and indi-
viduals. Without loss of generality, we assume sup

𝑡∈
|𝜆(𝑡)| =

||𝜆||∞ = 1 because it is always possible to rescale the latent
curve without changing the model by employing ampli-
tude factors �̃�𝑖𝑗 ∶= 𝐴𝑖𝑗||𝜆||∞ and a standardized curve
�̃�(𝑡) = 𝜆(𝑡)∕||𝜆||∞.
The distortion functions 𝐺 are elements of  ,

the convex space of all smooth, strictly increas-
ing functions with common endpoints, that is,
 ∶= {𝑔 ∶  →  | 𝑔 ∈ 𝐶2( ), 𝑔(𝑇1) = 𝑇1, 𝑔(𝑇2) =

𝑇2, 𝑔 is a strictly increasing homeomorphism}. The ele-
ments of this space represent random homeomorphisms
of the time domain and capture the presence of nonlinear
phase variation. We further assume that the distortion
functions 𝐺 may be decomposed as follows:

𝐺𝑖𝑗(𝑡) = (Ψ𝑗◦𝐻𝑖)(𝑡), 𝑖 = 1, … , 𝑛, 𝑗 = 1,… , 𝑝, (3)
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4 CARROLL and MÜLLER

F IGURE 1 Schematic of the latent deformation model, where 𝜆 denotes the latent base curve (top-left), Ψ denotes component
deformations (bottom-left), 𝛾 denotes component tempos (top-center),𝐻 denotes random subject-wise time distortion functions
(bottom-right), and 𝑋 denotes the observed multivariate curve data (top-right) resulting from the complete data-generating mechanism. This
figure appears in color in the electronic version of this article, and any mention of color refers to that version.
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CARROLL and MÜLLER 5

where the deterministic functions Ψ describe the
component-based effects of time distortion and
the random functions 𝐻 describe the subject-level
phase variation.
This decomposition is key to our approach. A reviewer

suggested to refer to it as a separability assumption, and
indeed, it is analogous to the well-known notion of separa-
bility of covariance in function-valued stochastic process
modeling (Liang et al., 2022; Chen et al., 2017) and we
have adopted this suggestion, as it brings out a key aspect
of the proposed LDM. As in the related covariance sep-
arability paradigm, time-warping separability confers the
advantages of better interpretability and dimension reduc-
tion over themore complex approaches that do not include
this assumption.
Under the warping separability assumption, the time-

warping functions 𝐺𝑖𝑗 are decomposed into the warping
maps Ψ𝑗 that convey the relative time scale of the 𝑗th
component and the warping maps 𝐻𝑖 that quantify the
internal clock of the 𝑖th subject. These warping maps
can be viewed as deformations from standard clock time,
𝑖𝑑(𝑡) ≡ 𝑡, to the system time of a given component or indi-
vidual. As such we refer to the collection of functions Ψ =

{Ψ𝑗 ∶ 𝑗 = 1,… , 𝑝} as component-level deformation func-
tions and the collection of functions = {𝐻𝑖 ∶ 𝑖 = 1,… , 𝑛}

as subject-level deformation functions.
The random subject-level deformation functions 𝐻𝑖

obey some probability law on the convex space , where
we assume that this probability law is such that 𝐸𝐻−1

𝑖
exists and that there is no net distortion on average,
that is, 𝐸𝐻−1

𝑖
(𝑡) = 𝑡 for 𝑡 ∈  . This assumption has been

referred to as “standardizing” the registration procedure
(Kneip & Ramsay, 2008). It is a mild assumption, as
when 𝐸𝐻−1

𝑖
(𝑡) = ℎ−10 (𝑡), with ℎ−10 ≠ 𝑖𝑑, then a standard-

ized registration procedure is given by reparameterizing
the warping functions as �̃�𝑖 = ℎ−10 ◦𝐻𝑖 so that 𝐸�̃�−1

𝑖
(𝑡) =

𝐸(𝐻−1
𝑖
◦ℎ0)(𝑡) = 𝑡. Component deformation functions are

also assumed to be standardized, but because they are
deterministic and not random, the assumption becomes
1

𝑝

∑𝑝

𝑗=1
Ψ−1
𝑗
(𝑡) = 𝑡 for 𝑡 ∈  . Together these conditions

imply 𝐸( 1
𝑝

∑𝑝

𝑗=1 𝐺
−1
𝑖𝑗
(𝑡)) = 𝑡 so that there is no net distor-

tion from the latent curve 𝜆.
Combining (2) and (3) yields the LDM for multivariate

functional data, given by

𝑋𝑖𝑗(𝑡) = 𝐴𝑖𝑗
(
𝜆◦Ψ𝑗◦𝐻𝑖

)
(𝑡), 𝑖 = 1, … , 𝑛, 𝑗 = 1,… , 𝑝. (4)

In practice, it may be useful to pose themodel in an equiva-
lent form, defining the component-warped versions of the
latent curve as 𝛾𝑗 = 𝜆◦Ψ𝑗 so that

𝑋𝑖𝑗(𝑡) = 𝐴𝑖𝑗
(
𝛾𝑗◦𝐻𝑖

)
(𝑡), 𝑖 = 1, … , 𝑛, 𝑗 = 1,… , 𝑝. (5)

In this form, the curves 𝛾𝑗(𝑡) convey the “typical” time
progression of the latent curve according to the 𝑗th com-
ponent’s system time, so we refer to this composition as
the 𝑗th component tempo function. The component tempo
functions can be viewed as the synchronized processes for
each component after accounting for random subject-level
time distortions.

2.3 Cross-component deformation maps

2.3.1 Marginal cross-component
deformations

To understand and quantify the relative timings between
any pair of components, 𝑗, 𝑘 ∈ {1, … , 𝑝}, it is useful
to define their cross-component deformation (XCD) 𝑇𝑗𝑘,
which is the deformation that, when applied to the 𝑗th
component, maps its tempo to that of the 𝑘th component,

𝑇𝑗𝑘 = Ψ−1
𝑗
◦Ψ𝑘, (6)

so that 𝛾𝑗(𝑇𝑗𝑘) = 𝜆◦Ψ𝑗◦Ψ
−1
𝑗
◦Ψ𝑘 = 𝜆◦Ψ𝑘 = 𝛾𝑘. Because

the component deformationsΨ𝑘 can be represented as dis-
tribution functions and are closed under composition, the
XCDmay also be represented as a distribution function and
is interpreted similarly to an ordinary component tempo.
While the component tempo Ψ𝑘 expresses the 𝑘th com-
ponent’s timing patterns in terms of clock time, the XCD
𝑇𝑗𝑘 expresses the same patterns relative to the tempo of the
𝑗th component.
For example, consider a pair of component processes,

Component A and Component B, for which Component
A tends to lag behind the latent curve, whereas the Com-
ponent B precedes it. An example of this can be seen in
the red and orange curves, respectively, in Figure 1. The
corresponding red deformation, Ψ𝐴, falls below the diag-
onal and conveys the lagged tempo, whereas the orange
deformation, Ψ𝐵, lies above the diagonal and expresses an
accelerated system time. The deformation function 𝑇𝐴𝐵
then sits above the diagonal and represents the time accel-
eration needed to bring the red tempo in line with the
orange component.

2.3.2 Subject-level cross-component
deformations

While the marginal XCDs describe the general time rela-
tions between components on a population level, we may
also be interested to see how an individual’s component
processes relate to one another. This perspective may be
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6 CARROLL and MÜLLER

especially useful when trying to understand intercom-
ponent dynamics that are mediated by covariate effects.
Conceptually, it is straightforward to extend the notion of
XCDs to individuals by searching for the warping function
𝑇
(𝑖)
𝑗𝑘
that brings the 𝑖th individual’s 𝑗th component in line

with the 𝑘th. A natural definition under the LDM is then

𝑇
(𝑖)
𝑗𝑘
= 𝐺−1

𝑖𝑗
◦𝐺𝑖𝑘, (7)

as this choice gives 𝑋𝑖𝑗◦𝑇
(𝑖)
𝑗𝑘
∝ 𝐴𝑖𝑗(𝜆◦𝐺𝑖𝑗◦𝐺

−1
𝑖𝑗
◦𝐺𝑖𝑘) ∝

(𝜆◦𝐺𝑖𝑘) ∝ 𝑋𝑖𝑘. In practice, this proportionalitywill become
equality once random amplitude factors are dealt with
during estimation. Statistics based on the XCDs can be
used in downstream analyses such as hypothesis testing
and regression. Several data illustrations are given in the
applications of Section 4.

3 MODEL ESTIMATION AND CURVE
RECONSTRUCTION

3.1 Internal clock estimation and
component-wise alignment

The proposed model estimation procedure relies on solv-
ing several univariate warping problems of type (1). It
is important to note that any of the warping methods
described in Section 2 may be used for practical imple-
mentation. In our implementation, we choose the pairwise
alignment method of Tang and Müller (2008), which pro-
vides an explicit representation of the warping functions
and satisfies some properties required by our theory in
order to derive convergence rates. This pairwise alignment
is easily implemented with the R package fdapace (Car-
roll et al., 2020). For a detailed discussion of the pairwise
warping method, we refer to the Supporting Information.
For the estimation of the model components, under

the LDM, each component 𝐻𝑗, 𝑗 = 1,… , 𝑝, gives rise to
a univariate warping problem. To see this, consider for a
fixed component 𝑗 the sample of univariate curves 𝑆𝑗 ∶=
{𝑋𝑖𝑗}

𝑛
𝑖=1
. Using the normalized curves 𝑋∗

𝑖𝑗
= 𝑋𝑖𝑗∕||𝑋𝑖𝑗||∞,

estimation of 𝛾𝑗 and 𝐻𝑖 for the 𝑗th component is a
consequence of

𝑋∗
𝑖𝑗
(𝑡) = (𝜆◦Ψ𝑗◦𝐻𝑖)(𝑡), (8)

which coincides with a warping framework of type (1)
with 𝜉 = 𝜆◦Ψ𝑗 , and ℎ𝑖 = 𝐻𝑖 . Replacing 𝑋 by 𝑋∗ in (8) is
necessary to eliminate the random amplitude factors 𝐴𝑖𝑗 .
Since the random functions 𝐺𝑖𝑗 are homeomorphisms, we
have ||𝑋𝑖𝑗||∞ = 𝐴𝑖𝑗||𝜆◦𝐺𝑖𝑗||∞ = 𝐴𝑖𝑗 . Thus, the normal-

ized curves 𝑋∗
𝑖𝑗
(𝑡) = (𝜆◦Ψ𝑗◦𝐻𝑖)(𝑡) do not depend on the

factors 𝐴𝑖𝑗 .
Applying an estimation method like pairwise warp-

ing for each of the subcollections 𝑆1, … , 𝑆𝑝 results
in 𝑝 estimates of the subject-level warping function,
�̃�
(1)
𝑖
(𝑡), … , �̃�

(𝑝)
𝑖
(𝑡). Taking the mean of the resulting 𝑝

warping functions gives an estimate for the subject-specific
warp,

�̂�𝑖 = 𝑝−1
𝑝∑
𝑗=1

�̃�
(𝑗)
𝑖
, 𝑖 = 1, … , 𝑛. (9)

For the overall penalty parameter associated with the
pairwise warping implementation, we set

𝜂1 = max
1≤𝑗≤𝑝 𝜂1𝑗, (10)

where 𝜂1𝑗 = 10−4 × {𝑛−1
∑𝑛

𝑖=1
∫ (𝑋𝑖𝑗(𝑡) − �̄�𝑗(𝑡))

2𝑑𝑡}, 𝑗 =

1,… , 𝑝, is the default choice of the penalty parameter
for each of the 𝑝 registrations, as per Tang and Müller
(2008). With subject time-warping estimators in hand,
a plug-in estimate of 𝛾𝑗 is obtained by averaging the
component-aligned curves,

�̂�𝑗 = 𝑛−1
𝑛∑
𝑖=1

(𝑋𝑖𝑗◦�̂�
−1
𝑖
)∕||𝑋𝑖𝑗||∞, for 𝑗 = 1,… , 𝑝. (11)

3.2 Global alignment and latent curve
estimation

A central idea in the estimation of the LDM is the fact that
any univariate curve 𝑋𝑖𝑗 contains information about the
latent curve, regardless of which component 𝑗 is consid-
ered. Thismotivates a perspective inwhichwe temporarily
ignore the multivariate structure of the data and expand
our scope to the full collection of curves 𝑆 = ∪

𝑝
𝑗=1

𝑆𝑗 . For
each subject 𝑖, select one of its component curves at ran-
dom as a representative. Call this representative curve 𝑍𝑖
and denote its normalized counterpart by𝑍∗

𝑖
. Selecting one

of the components at random ensures that we have 𝑃(𝑍𝑖 =
𝑋𝑖𝑗) = 1∕𝑝 for all 𝑖 = 1, … , 𝑛, 𝑗 = 1,… , 𝑝. The collection
of curves {𝑍𝑖, 𝑖 = 1, … , 𝑛} can be thought of as realizations
of 𝜆 subject to some random distortion 𝐷𝑖 , where 𝐷𝑖 = 𝐺𝑖𝑗
if the 𝑗th component curve is selected. Define 𝐼𝑖𝑗 as the
event that the curve 𝑍𝑖 comes from the collection 𝑆𝑗 of
𝑗th component curves. Conditional on the event 𝐼𝑖𝑗 (which
happens with probability 1∕𝑝 for all 𝑖 = 1, … , 𝑛), it follows
that 𝐷𝑖 = 𝐺𝑖𝑗 = Ψ𝑗◦𝐻𝑖 . Then, on average, there is no net
warping from the latent curve, as
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CARROLL and MÜLLER 7

𝐸[𝐷−1
𝑖
] = 𝐸{𝐸[𝐷−1

𝑖
|𝐼𝑖𝑗]} =

𝑝∑
𝑗=1

𝐸[𝐻−1
𝑖
◦Ψ−1

𝑗
]𝑃(𝐼𝑖𝑗)

= 𝑝−1
𝑝∑
𝑗=1

Ψ−1
𝑗
= 𝑖𝑑. (12)

This observation motivates the warping problem

𝑍∗
𝑖
= 𝜆◦𝐷𝑖, for 𝑖 = 1, … , 𝑛. (13)

The critical implication of this relation is that if we
expand our scope to the full collection 𝑆 and apply a tra-
ditional method like pairwise warping to obtain �̂�𝑖 for all
𝑖 = 1, … , 𝑛, the latent curve can be estimated by averaging
the globally-aligned curves,

�̂� = 𝑛−1
𝑛∑
𝑖=1

(𝑍𝑖◦�̂�
−1
𝑖
)∕||𝑍𝑖||∞. (14)

The estimators of the component deformations are moti-
vated by recalling that

𝛾𝑗 = 𝜆◦Ψ𝑗, 𝑗 = 1,… ., 𝑝.

Using a spline representation (see Section A of the Online
Appendix), we write

Ψ𝑗(𝑡) = 𝜃𝑇𝛼(𝑡) (15)

and estimate the component warps by solving the penal-
ized minimization problem,

�̃�Ψ𝑗 = argmin
𝜃∈Θ

𝒞𝜂2(𝜃; �̂�𝑗, �̂�),

𝒞𝜂2(𝜃; �̂�𝑗, �̂�) = ∫ 𝑑
2
(
�̂�𝑗, �̂�(𝜃

𝑇𝛼(𝑡))
)
𝑑𝑡

+ 𝜂2 ∫ (𝜃
𝑇𝛼(𝑡) − 𝑡)2𝑑𝑡, (16)

with 𝜂2 = 10−4 × {𝑝−1
∑𝑝

𝑗=1
∫ (�̂�𝑗(𝑡) − �̂�(𝑡))2𝑑𝑡} as the

default choice of the penalty parameter in line with Tang
and Müller (2008). Finally, we obtain the component
warps as

Ψ̂𝑗(𝑡) = �̃�𝑇Ψ𝑗
𝛼(𝑡). (17)

3.3 Measurement error and curve
reconstruction

Note that under the assumption of fully observed curves
without measurement error, the amplitude factors 𝐴𝑖𝑗 =

||𝑋𝑖𝑗||∞ are known. Often, in practice, this is not real-
istic, and the factors must be estimated by, for example,
�̂�𝑖𝑗 = ||�̃�𝑖𝑗||∞ where �̃� denotes a smoothing estimate of a
function 𝑋 that is observed with noise, as described in the
following section. We note that these smoothing methods
introduce a finite bias on the amplitude factors, but as the
number of time points in the observation grid goes to infin-
ity, our proposed estimate is asymptotically unbiased as
shown in Theorem 1 f. of Section 5. We refer to the Online
Appendix for a detailed discussion of applying smoothing
methods with the LDM.
After the smoothing step, estimates are obtained by sub-

stituting the smoothed curves in for𝑋𝑖𝑗 and implementing
the procedure described in Sections 3.2 and 3.3. Once all
model components are estimated, plug-in estimates of the
composite distortion functions and marginal and subject-
level component deformation functions are an immediate
consequence,

�̂�𝑖𝑗 = Ψ̂𝑗◦�̂�𝑖, (18)

�̂�𝑗𝑘 = Ψ̂−1
𝑗
◦Ψ̂𝑘, (19)

�̂�
(𝑖)
𝑗𝑘
= �̂�−1

𝑖𝑗
◦�̂�𝑖𝑘, 𝑖 = 1, … , 𝑛, 𝑗, 𝑘 = 1,… , 𝑝. (20)

Additionally, fitted curves based on the LDM can be
obtained as

�̂�𝑖𝑗(𝑡) = �̂�𝑖𝑗(�̂�◦�̂�𝑖𝑗)(𝑡)

= �̂�𝑖𝑗(�̂�◦Ψ̂𝑗◦�̂�𝑖)(𝑡), 𝑖 = 1, … , 𝑛, 𝑗, 𝑘 = 1,… , 𝑝.

(21)

These fits can be viewed through the lens of dimension
reduction as their calculation requires only 𝑛 + 𝑝 + 1 esti-
mated functions as opposed to 𝑛𝑝 curves in the original
data. This constitutes a novel representation for multi-
variate functional data that is distinct from the common
functional principal component representation.

4 DATA APPLICATIONS

4.1 Zürich growth study

From 1954 to 1978, a longitudinal study on human growth
and development was conducted at the University Chil-
dren’s Hospital in Zürich. The sitting heights, arm lengths,
and leg lengths of a cohort of children were measured
on a dense time grid and these data can be viewed as
densely sampled multivariate functional data. We focus
on the timing of pubertal growth spurts, which usu-
ally occur between ages 9 and 18. It is standard in the
growth curve literature to examine the derivatives of the
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8 CARROLL and MÜLLER

F IGURE 2 Growth velocities (in cm/year) during puberty for boys (blue) and girls (red). Scaled component tempo functions are marked
for boys and girls with dashed and dotted lines, respectively. This figure appears in color in the electronic version of this article, and any mention
of color refers to that version.

growth curves, that is, the growth velocities, instead of
the curves themselves (Gasser et al., 1984). The veloc-
ities have a peak during puberty, with the crest loca-
tion representing the age when an individual is growing
fastest.
The timings and curvatures of these peaks are critical

in informing growth patterns. In a first step, we esti-
mated these growth velocities by local linear smoothing
(Figure 2). It is well known that there is a difference in
the pubertal growth patterns of boys and girls. This dis-
tinction is clear from just a simple inspection of the growth
velocities in Figure 1. It is then of scientific interest, with
practical implications for auxologists, pediatricians, and
medical practitioners, to further study and quantify the dif-
ferential between the onset of puberty for boys and girls,
differentiated by different body parts.
For the Zürich Longitudinal Growth Study, the biolog-

ical clocks accelerate and deviate from clock time rapidly
between the ages of 9 and 12 for girls and between the ages
of 12 and 15 for boys (represented by the black dashed line
on the diagonal). Component tempos for boys and girls
are a simple way to summarize these differences (Figure 2,
dashed and dotted lines, respectively), as they serve as the
structural means of the timing functions.
Considering the joint time dynamics of the𝑝 = 3modal-

ities, we restrict our analysis to the boys for the sake of
brevity. A natural place to start when comparing growth
patterns is the component tempos, which are displayed for
each modality in the left panel of Figure 3. The dynam-
ics of joint development emerges when examining the
order of peaks across modalities. Leg length is first, fol-
lowed by arm length, while sitting height lags behind.
The tempos have similar slopes during puberty, though

leg length has the most gradual spurt and sitting height
the sharpest, perhaps because its lagged onset results in
a smaller window between the onset of its growth spurt
and the maturation date of 18 years. While it is possible
for an individual to experience some minor growth past
the age of 18 in the Zürich study, such cases were rare,
and therefore this complication was ignored. The com-
ponent deformations displayed in Figure 3 (right) further
illustrate the nature of each body part’s tempo relative to
baseline. Remarkably, the tempo of arm length is nearly
identical to the latent curve. This suggests that arm length
can be used a representativemodality thatmirrors a child’s
overall development.
We also can interpret the XCDs �̂�𝑗𝑘, 𝑗, 𝑘 ∈ {1, … , 𝑝},

estimated as per (19). The magnitude of the XCD map’s
deviation from the identity shows how dissimilar two com-
ponents are. For example, sitting height and leg length
are the most distinct modalities of growth among those
considered here, and their XCD map exhibits the most
pronounced departure from the identity. An intuitive
interpretation of themap is that𝑇𝑗𝑘 expresses the 𝑘th com-
ponent’s timing patterns relative to the 𝑗th component’s
as a baseline. For example, when the leg tempo is at time
𝑡 = 13.5, the comparable time point for the sitting height
tempo is approximately at 𝑇𝑗𝑘(13.5) ≈ 14.5, as illustrated
in Figure 4.

4.2 Air pollutants in Sacramento, CA,
USA

The study of air pollutants has been a topic of interest
for atmospheric scientists and environmentalists alike for
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CARROLL and MÜLLER 9

F IGURE 3 Component tempos 𝛾 (left) and deformations Ψ (right) for growth modalities. The dashed line represents the tempo and
deformation for the latent tempo, 𝜆. This figure appears in color in the electronic version of this article, and any mention of color refers to that
version.

several decades. In particular, increased ground-level
ozone (O3) concentrations have been shown to have harm-
ful effects on human health. Unlike many air pollutants,
surface ozone is not directly emitted by sources of air
pollution (e.g., road traffic); it is formed as a result of
interactions between nitrogen oxides and volatile organic
compounds in the presence of sunlight (Abdul-Wahab,
2001). Because of this interaction, compounds such as
nitrogen dioxide are known and important precursors of
increased ozone concentrations (Tu et al., 2007).
The California Environmental Protection Agency has

monitored hourly air pollutant concentrations at several
station locations since the 1980s. Here we consider the
sample of weekday trajectories of ozone (O3) and nitrogen
oxides (NO𝑥) concentrations during the summer of 2005 in
Sacramento (Figure 5). Smooth trajectories were obtained
from raw data using local linear weighted least squares.
Gervini (2015) has previously investigated a similar dataset
in the context of warped functional regression, where the
primary aim was to model phase variation explicitly in
order to relate the timing of peak concentrations of NO𝑥

to those of O3.
The chemistry of the compounds as well as a visual

inspection of the curves suggests that there are two dis-
tinct classes of pollutants. NO𝑥 concentrations tend to
peak around 8 a.m., reflecting standardmorning commute
hours and the impact of traffic emissions on air quality. On
the other hand, ozone levels peak around 2–3 p.m., indi-
cating that the synthesis mechanism induces a lag of up to
approximately 6 h.

It is then of interest to studywhethermeteorological fac-
tors might affect the rate of ozone synthesis. Individual
component deformations combined with Fréchet regres-
sion for distributions provide a natural framework for
this (Petersen & Müller, 2019). Subject-specific deforma-
tions from NO𝑥 concentrations to ozone concentrations,
𝑇
(𝑖)
𝑁𝑂𝑥→𝑂3

, were calculated as per (20) for each day. Global
Fréchet regression was then applied through fitting the
model

�̂�⊕(𝑥) = argmin
𝑇∈

𝑀𝑛(𝑇, 𝑥),

𝑀𝑛(𝑇, 𝑥) = 𝑛−1
𝑛∑
𝑖=1

𝑞𝑖𝑛𝑑
2
𝑊(𝑇𝑖, 𝑇),

(22)

where 𝑚⊕ denotes the conditional Fréchet mean of
the deformation given the covariate 𝑥, the wind speed
recorded a given day. Here, 𝑑𝑊 is the 2-Wasserstein dis-
tance (Villani, 2003) and the weights 𝑞𝑖𝑛 are derived from
global linear regression and defined as 𝑞𝑖𝑛 = 1 + (𝑥𝑖 −

�̄�)(𝑥 − �̄�)∕𝑠2𝑥 (Petersen & Müller, 2019), where �̄� and 𝑠2𝑥
represent the sample mean and variance of the observed
wind speeds, respectively. The model was fit using the R
package frechet, observing that the deformation func-
tions can be represented as distribution functions (Chen
et al., 2020).
Figure 6 displays the observed deformations and the

fits obtained from Fréchet regression using windspeed as
a predictor. The rainbow gradient corresponds to wind-
speeds ranging from 3 to 10 knots and their associated
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10 CARROLL and MÜLLER

F IGURE 4 The cross-component deformation map 𝑇12 that expresses the sitting height’s timing patterns relative to the leg lengths as a
baseline. The peak of pubertal growth rate for the leg occurs at approximately age 13.5, whereas the maximum growth velocity for sitting
height growth occurs at approximately 𝑇12(13.5) ≈ 14.5 years old. This figure appears in color in the electronic version of this article, and any
mention of color refers to that version..

F IGURE 5 Twenty-four-hour trajectories of NO𝑥 (left) and ozone (right), concentrations in parts per billion (ppb) on a log scale.

fitted deformations are overlaid onto the original data.
The regression fits suggest that days with lower wind-
speeds correspond to deformations that are further from
the diagonal, indicating an exaggerated lag between peak
concentrations of NO𝑥 and ozone. On the other hand, days
with high wind speeds have fitted deformations very near
the diagonal. This suggests that windier settings acceler-
ate the synthesis process. Intuitively, this is a reasonable
result in terms of the physical interpretation, as more wind
will result in a higher rate of collisions of the particles and

thus quicker production of ozone after peakNO𝑥 emission.
The Fréchet 𝑅2⊕ value was 0.44, which suggests that wind
speed explains a considerable amount of variation in the
observed deformations.

5 THEORETICAL RESULTS

Our results focus on convergence of the components of
the LDM described in (4) as the number of curves 𝑛 and
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CARROLL and MÜLLER 11

F IGURE 6 Fréchet regression of NO𝑥-to-O3 cross-component deformations on daily max windspeeds in knots. Windier days
correspond to more linear deformation functions, which suggests that O3 synthesis more closely follows NO𝑥 emission. Less windy days are
associated with more pronounced lags between the pollutants. This figure appears in color in the electronic version of this article, and any
mention of color refers to that version..

the number of observations per curve 𝑚 tend to infinity.
We require the following assumptions on (L) the compo-
nents of the LDM and (S) the smoothing methodology in
the presence of discretely observed curves:

L1 The latent curve 𝜆(𝑡) ∈ 𝐶2(𝐷) is a bounded func-
tion. For any nondegenerate interval 0 ⊂  , 0 <

∫0 𝜆′(𝑡)2𝑑𝑡 < ∞.
L2 For 𝑗 = 1,… , 𝑝, sup

1≤𝑖≤𝑛 𝐴𝑖𝑗 = 𝑃(1) and sup
1≤𝑖≤𝑛 𝐴−1

𝑖𝑗
=

𝑃(1).

Assumption (L1) bounds the latent curves and its deriva-
tives and ensures that there are no flat stretches and the
uniqueness of the component estimates. (L2) ensures that
the ranges of the random processes are bounded away
from zero and infinity with high probability; this condition
is needed for the uniform convergence of the smoothing
estimate.

S0 The time points, 𝑡1, … , 𝑡𝑚, depend on the sample size 𝑛,
𝑚 = 𝑚(𝑛), and constitute a dense regular design with
smooth design density 𝑓 with inf

𝑡∈ 𝑓(𝑡) > 0 that gener-

ates the time points according to 𝑡𝑠 = 𝐹−1(
𝑠−1

𝑚−1
), 𝑠 =

1, … ,𝑚, where 𝐹−1 denotes the quantile function asso-
ciated with 𝑓. The second derivative 𝑓′′ is bounded,
sup
𝑡∈ ◦

|𝑓′′(𝑡)| < ∞.

S1 The kernel function 𝐾 is a probability density function
with support [−1, 1], symmetric around zero, and uni-

formly continuous on its support, with ∫ 1

−1
𝐾2(𝑢)𝑑𝑢 <

∞.
S2 For each 𝑗 = 1,… , 𝑝, the sequences𝑚 = 𝑚(𝑛) and 𝑏 =

𝑏(𝑛) satisfy (1) 0 < 𝑏 < ∞, and (2)𝑚 → ∞, 𝑏 → 0, and
𝑚𝑏2(log 𝑏)−1 → ∞ as 𝑛 → ∞.

These assumptions guarantee the consistent estimation of
𝑛 curves simultaneously, as shown in the following propo-
sition. We observe that (S2) is, for example, satisfied if
the bandwidth sequence is chosen such that 𝑏 = 𝑏(𝑛) ∼

𝑚(𝑛)−1∕6.

Proposition 1. Under assumptions (S0−S2), if
𝐸||𝑋(𝜈)(𝑡)||2∞ < ∞, 𝜈 = 0, 1, 2, we have the uniform
convergence

sup
𝑡∈

|�̃�𝑖𝑗(𝑡) − 𝑋𝑖𝑗(𝑡)| = 𝑃(𝑚
−1∕3). (23)

The rate also extends to the standardized versions 𝑋∗
𝑖𝑗
=

𝑋𝑖𝑗∕||𝑋𝑖𝑗||∞,

sup
𝑡∈

|||||
�̃�𝑖𝑗(𝑡)

||�̃�𝑖𝑗||∞ −
𝑋𝑖𝑗(𝑡)

||𝑋𝑖𝑗||∞
|||||
= 𝑃(𝑚

−1∕3). (24)

This result agrees with the existing results in the liter-
ature, in that it is a special case of a general result for
metric space-valued functional data (see Chen & Müller,
2022), here for the case of real-valued functions. The
estimators of the latent curve and component deforma-

 15410420, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/biom

.13851 by U
niversity O

f C
alifornia - D

avis, W
iley O

nline L
ibrary on [21/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



12 CARROLL and MÜLLER

tions involve averages of the smoothing estimates over
the sample of curves as 𝑛 → ∞. The corresponding rates
of convergence will thus rely on the uniform summa-
bility of the difference between the smoothed and true
curves over 𝑛 and we then have a uniform rate of 𝜏𝑚 =

𝑚−(1−𝛿)∕3 for an arbitrarily small 𝛿 > 0 in lieu of the
above rate 𝑚−1∕3; see Lemma 1 in the Online Appendix.
The proposed estimators also rely on the mechanics of
the pairwise warping methods, whose convergence prop-
erties have been established in a general form in Tang
and Müller (2008) and Chen and Müller (2022). Lemma
2 in the Online Appendix states these rates in the spe-
cific framework of the LDM. We are now in a position to
state our main result, which establishes rates of conver-
gence for the estimators of the components of the LDM as
follows.

Theorem 1. Under assumptions (L1), (L2), and (S0−S2),
with 𝜏𝑚 = 𝑚−(1−𝛿)∕3 for an arbitrarily small 𝛿 > 0 and
penalty parameters as described in (10) and (16), we have for
all 𝑖 = 1, … , 𝑛, 𝑗 = 1,… , 𝑝,
a. sup

𝑡∈
|�̂�𝑖(𝑡) − 𝐻(𝑡)| = 𝑃(𝑛

−1∕2) + 𝑃(𝜏
1∕2
𝑚 ) + (𝜂1∕21 ),

b. sup
𝑡∈

|�̂�𝑗(𝑡) − 𝛾𝑗(𝑡)| = 𝑃(𝑛
−1∕2) + 𝑃(𝜏

1∕2
𝑚 ) + (𝜂1∕21 )

c. sup
𝑡∈

|�̂�(𝑡) − 𝜆(𝑡)| = 𝑃(𝑛
−1∕2) + 𝑃(𝜏

1∕2
𝑚 ) + (𝜂1∕21 ),

d. sup
𝑡∈

|Ψ̂𝑗(𝑡) − Ψ𝑗(𝑡)| = 𝑃(𝑛
−1∕2) + 𝑃(𝜏

1∕2
𝑚 ) +

(max(𝜂1, 𝜂2)1∕2),
e. sup

𝑡∈
|�̂�𝑖𝑗(𝑡) − 𝐺𝑖𝑗(𝑡)| = 𝑃(𝑛

−1∕2) + 𝑃(𝜏
1∕2
𝑚 ) +

(max(𝜂1, 𝜂2)1∕2), and
f. |�̂�𝑖𝑗 − 𝐴𝑖𝑗| = 𝑃(𝑚

−1∕6).

The three terms in the rates correspond, in order, to (1)
the parametric rate achieved through the standard central
limit theorem, (2) the smoothing rate that is dependent on
the number of observations per curve𝑚, and (3) a rate due
to the well-known bias introduced by the penalty param-
eters used in the regularization steps. Additionally, if we
suppose that𝑚 is bounded below by amultiple of𝑛3(1−𝛿)−1 ,
then the rates corresponding to the smoothing steps are
bounded above by 𝑛−1∕2. If we take the penalty parameters
to be 𝜂1 ∼ 𝜂2 = (𝑛−1), a 𝑛−1∕2 rate of convergence can
be achieved for each of the estimators in Theorem 1 𝑎.-𝑒.
Otherwise if𝑚 ∼ 𝑛Δ(1−𝛿)

−1 , for anyΔ < 3, the convergence
is limited by the smoothing step and achieves the rate of
𝑛−Δ∕6.

Corollary 1. Suppose the penalty parameters are such that
𝜂1 ∼ 𝜂2 ∼ 𝑁−1. If the random trajectories are fully observed
without error or the trajectories are recorded with at least
a multiple of 𝑚 ∼ 𝑛Δ(1−𝛿)

−1 observations per curve, with

Δ > 3, then under the assumptions of Theorem 1, we have
for all 𝑖 = 1, … , 𝑛, 𝑗 = 1,… , 𝑝,
a. sup

𝑡∈
|�̂�𝑖(𝑡) − 𝐻(𝑡)| = 𝑃(𝑛

−1∕2),

b. sup
𝑡∈

|�̂�𝑗(𝑡) − 𝛾𝑗(𝑡)| = 𝑃(𝑛
−1∕2)

c. sup
𝑡∈

|�̂�(𝑡) − 𝜆(𝑡)| = 𝑃(𝑛
−1∕2),

d. sup
𝑡∈

|Ψ̂𝑗(𝑡) − Ψ𝑗(𝑡)| = 𝑃(𝑛
−1∕2),

e. sup
𝑡∈

|�̂�𝑖𝑗(𝑡) − 𝐺𝑖𝑗(𝑡)| = 𝑃(𝑛
−1∕2), and

f. |�̂�𝑖𝑗 − 𝐴𝑖𝑗| = 𝑃(𝑛
−1∕2).

The asymptotic results for the XCDs then follow imme-
diately from the rates established in Theorem 1.

Theorem 2. Under the assumptions of Theorem 1 for 𝑖 =

1, … , 𝑛, 1 ≤ 𝑗, 𝑘 ≤ 𝑝,
a. sup

𝑡∈
|�̂�𝑗𝑘(𝑡) − 𝑇𝑗𝑘(𝑡)| = 𝑃(𝑛

−1∕2) + 𝑃(𝜏
1∕2
𝑚 ) +

(max(𝜂1, 𝜂2)1∕2), and
b. sup

𝑡∈
|�̂�(𝑖)
𝑗𝑘
(𝑡) − 𝑇

(𝑖)
𝑗𝑘
(𝑡)| = 𝑃(𝑛

−1∕2) + 𝑃(𝜏
1∕2
𝑚 ) +

(max(𝜂1, 𝜂2)1∕2).
A similar corollary for XCDs follows in the case of fully

observed curves or dense enough designs.

Corollary 2. Suppose the penalty parameters are such that
𝜂1 ∼ 𝜂2 ∼ 𝑁−1. If the random trajectories are fully observed
without error or are recorded with at least a multiple of𝑚 ∼

𝑛Δ(1−𝛿)
−1 observations per curve, with Δ > 3, then under the

assumptions of Theorem 1, we have for 𝑖 = 1, … , 𝑛, 1 ≤
𝑗, 𝑘 ≤ 𝑝,
a. sup

𝑡∈
|�̂�𝑗𝑘(𝑡) − 𝑇𝑗𝑘(𝑡)| = 𝑃(𝑛

−1∕2), and

b. sup
𝑡∈

|�̂�(𝑖)
𝑗𝑘
(𝑡) − 𝑇

(𝑖)
𝑗𝑘
(𝑡)| = 𝑃(𝑛

−1∕2).

Corollaries 1 and 2 suggest that, on dense enough mea-
surement schedules, parametric rates of convergence are
achievable for the components of the LDM.

Remark 1. For any cycle of components indexed by the
sequence,

𝜋1 → 𝜋2 → 𝜋3 → ⋯ → 𝜋𝐿 → 𝜋1,

with arbitrary length 𝐿 and 𝜋1, … , 𝜋𝐿 ∈ {1, … , 𝑝}, their
respective XCDs satisfy

𝑇𝜋1𝜋2◦𝑇𝜋2𝜋3◦…◦𝑇𝜋𝐿𝜋1 = 𝑖𝑑.

This result ensures that the system of XCDs maps pre-
vents inconsistencies within itself. For example, if for three
components 𝐴, 𝐵, and 𝐶, the pairwise deformations 𝑇𝐴𝐵

 15410420, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/biom

.13851 by U
niversity O

f C
alifornia - D

avis, W
iley O

nline L
ibrary on [21/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



CARROLL and MÜLLER 13

and 𝑇𝐵𝐶 suggest that Component𝐴 tends to precede Com-
ponent 𝐵 that itself tends to precede Component 𝐶, this
implies that the deformations𝑇𝐴𝐶must indicate that Com-
ponent 𝐴 tends to precede Component 𝐶. Furthermore,
mapping a component tempo through other components
and then back to itself will result in the original component
tempo, unchanged. Next, we consider the convergence
rates of reconstructed curves as per (21), putting all model
components together.

Theorem 3. Under the assumptions of Theorem 1 for 𝑖 =
1, … , 𝑛, 𝑗 = 1,… , 𝑝,

sup
𝑡∈

|�̂�𝑖𝑗(𝑡) − 𝑋𝑖𝑗(𝑡)| = 𝑃(𝑛
−1∕2) + 𝑃(𝜏

1∕2
𝑚 )

+ (max(𝜂1, 𝜂2)1∕2).
Again, a parametric rate is achievable on dense enough

designs.

Corollary 3. Suppose the penalty parameters are such that
𝜂1 ∼ 𝜂2 ∼ 𝑁−1. If the random trajectories are fully observed
without error or the trajectories are recorded with at least a
multiple of 𝑚 ∼ 𝑛Δ(1−𝛿)

−1 observations per curve, with Δ >

3, then under the assumptions of Theorem 1, we have for 𝑖 =
1, … , 𝑛, 𝑗 = 1,… , 𝑝,

sup
𝑡∈

|�̂�𝑖𝑗(𝑡) − 𝑋𝑖𝑗(𝑡)| = 𝑃(𝑛
−1∕2).

6 CONCLUDING REMARKS

The LDM provides a novel decomposition for a large
class of practically relevant multivariate functional data by
quantifying their intercomponent time dynamics. A sepa-
rability assumption that makes it possible to factor overall
timewarping into component-specific and subject-specific
time-warping components is crucial. The ensuing simple
representation for multivariate functional data includes
two fixed effect terms (the latent curve and a collection
of component-level warping functions) and two random
effect terms (a random amplitude vector and a collection
of subject-level warping functions). This representation
requires the estimation of only one random warping func-
tion and amplitude vector per subject, in addition to 𝑝 + 1

deterministic functions overall.
In some cases, these components may be reduced even

further. For example, when subject-level warping is negli-
gible or part of a preprocessing step, a special case of the
model arises in which time dynamics are fully character-
ized by the 𝑝 + 1 fixed effect curves and one random scalar
per component. Alternatively, if subject-level time warp-
ing is present but further dimension reduction is desired,

transformation of warps by the LQD (log quantile density)
transform (Petersen et al., 2016) or other means (see, e.g.,
Happ et al., 2019) will permit a Karhunen–Loève expan-
sion in 2-space. Applying the LDM and truncating this
expansion at an appropriate number of eigenfunctions, say
𝐾0, creates a representation ofmultivariate functional data
using only𝑝 + 𝐾0 random scalars, as opposed to a standard
functional principal component analysis representation
that requires 𝑝 × 𝐾0 variables.
A limitation of this framework is the fact that slight

deviations from a common latent curve will always occur
in practice. An implicit assumption in applying the LDM
is that the magnitude of nuisance peaks is negligible in
comparison to the dominant features of the latent curve.
Simulations that examine the robustness of component
estimates in the presence of model misspecification or
more pronounced nuisance peaks are in the Support-
ing Information.
The LDM serves both as an extension of existing uni-

variate functional warping methods, as well as a stepping
stone for many new potential models for multivariate
FDA and registration. Future directions of note include
harnessing XCD maps for imputating components in
partially observed multivariate functional data, or relax-
ing structural assumptions to allow for more flexible
functional relationships between different latent curves
for distinct subsets of components; for example, allow-
ing for multiple latent curves, 𝜆1(𝑡), 𝜆2(𝑡), with 𝜆1(𝑡) =

𝑔(𝜆2(𝑡)) for some function 𝑔. Spatiotemporal applica-
tions are also promising for the LDM, in which the
vector components are indexed by location. Then com-
ponent warping functions may reveal time trends across
geographic regions.
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