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Abstract
Multivariate functional data are becoming ubiquitous with advances in modern
technology and are substantially more complex than univariate functional data.
We propose and study a novel model for multivariate functional data where the
component processes are subject to mutual time warping. That is, the compo-
nent processes exhibit a similar shape but are subject to systematic phase vari-
ation across their time domains. To address this previously unconsidered mode
of warping, we propose new registration methodology that is based on a shift-
warping model. Our method differs from all existing registration methods for
functional data in a fundamental way. Namely, instead of focusing on the tradi-
tional approach to warping, where one aims to recover individual-specific reg-
istration, we focus on shift registration across the components of a multivari-
ate functional data vector on a population-wide level. Our proposed estimates
for these shifts are identifiable, enjoy parametric rates of convergence, and often
have intuitive physical interpretations, all in contrast to traditional curve-specific
registration approaches. We demonstrate the implementation and interpretation
of the proposedmethod by applying ourmethodology to the Zürich Longitudinal
Growth data and study its finite sample properties in simulations.
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1 INTRODUCTION

Multivariate functional data are often encountered in
biological or chemical processes that are continuously
measured for a group of subjects or observational units.
Such processes arise in many longitudinal studies, espe-
cially in the biomedical sciences, the scopes of which
range from human growth to time courses of protein
levels during metabolic processes (Dubin and Müller,
2005; Park and Ahn, 2017). With the increasing ubiquity
of multivariate functional data, the study of how to treat
such data has recently become a very active field, partic-

ularly in the context of clustering (Brunel and Park, 2014;
Jacques and Preda, 2014; Park and Ahn, 2017), functional
regression (Chiou, 2012; Chiou et al., 2016), and in terms
of general modeling of functional data (Claeskens et al.,
2014). Common approaches for analyzing multivariate
functional data have focused on dimension reduction
via multivariate functional principal components (Zhou
et al., 2008; Chiou et al., 2014; Happ and Greven, 2018)
or decomposition into component-specific processes and
their interactions (Chiou et al., 2016).
In applications such as growth curves, if we view mul-

tivariate longitudinal data as generated by an underlying
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𝑝-dimensional smooth stochastic process, the component
curves of the functional vector may exhibit mutual time
warping. If left unchecked, such vector component warp-
ing may distort principal components and inflate data
variance, while if handled properly, it may yield intuitive
physical interpretations and a more parsimonious repre-
sentation of the data. As far as we know, the idea of explic-
itlymodeling time relations between component processes
has not yet been considered for multivariate functional
data, which allows one to take advantage of repeated obser-
vations of a multivariate process for a cohort of subjects.
Typically, for each subject in longitudinal studies one

has measurements on a grid of time points, where record-
ings are possibly contaminated with measurement error.
Often these measurements are multivariate, notably in
growth studies (eg, Han et al., 2018), which prompts con-
sideration of functional methods that are geared toward
repeatedly sampled multivariate functional data. The
Zürich Longitudinal Growth Study motivated us to model
such multivariate functional data by allowing the com-
ponents to be mutually time-shifted against each other,
as some components of growth may systematically pre-
cede others.
The idea of warping across components is most prag-

matic when the component processes ofmultivariate func-
tional data exhibit similarity in their shapes. In the case of
growth studies, each body part’s component process fol-
lows the same general pattern: a period of rapid devel-
opment during infancy which then slows to a roughly
constant rate of growth until puberty, at which time the
growth velocity peaks (ie, the pubertal growth spurt)
before decreasing to zero as the subject reaches adult-
hood (Gasser et al., 1984). The multivariate aspect of these
growth curves allows us to compare the growth processes
of different parts of the body. For example, it may be that
legs undergo their growth spurt earlier in life than arms
do. It is an interesting biological question to search for
a common process that ordinates the timings of growth
spurts across body parts. Another situationwhere this phe-
nomenon arises is in the above-mentioned recordings of
protein levels during metabolic processes. Certain biologi-
cal functions are associated with peaks and valleys of cer-
tain protein levels and their relative timings expose the
order of the underlying enzymatic mechanisms at work.
Data from the Zürich Longitudinal Growth Study were

used previously to investigate the timing of growth spurts
across body parts using a phase-clustering model (Park
and Ahn, 2017). Our study uses the same data but instead
emphasizes the analysis of phase variations in the com-
ponent growth velocity curves to establish time relations.
In particular, we investigate mutual time warping in the
derivatives across the components of themultivariate func-
tional processes during a growth spurt window, as deriva-

tives are more informative about human growth than the
growth curves themselves. Specifically, we assume amodel
that uses relative time shifts between component pro-
cesses to establish their pairwise time relations. Informa-
tion about the relative shifts between pairs of components
may then be combined to inform the full system of rel-
ative timings across body parts. We emphasize that our
approach, while motivated by growth data, is by no means
limited to this application and can also be implemented
for multivariate functional data that has neither a well-
defined time origin nor an endpoint, as in the case of blood
protein time courses (eg, Dubin and Müller, 2005).
The organization of this paper is as follows. Section 2

motivates and establishes a shift-warping model for the
cross-component registration problem. In Section 3 and 4,
we estimate the proposed model components in the pair-
wise and general settings, respectively. An application to
human growth curves is discussed in Section 5. A simula-
tion study that illustrates the stability of the method even
in the presence of nuisance peaks and sizeable measure-
ment error is explored in Section 6. Section 7 contains theo-
retical results, with accompanying proofs appearing in the
appendix. Specifically, we find that under a quadratic cur-
vature assumption, one attains parametric rates of conver-
gence for cross-component shift estimates.

2 A SHIFT-WARPINGMODEL FOR
MULTIVARIATE TIME RELATIONS

To illustrate the idea of mutual component warping, con-
sider the growth velocities for a handful of representa-
tive children in the Zürich Longitudinal Study (Figure 1),
which will be revisited in its entirety in Section 5. We con-
sider pubertal growth, that is, growth curves are evaluated
in the interval  = [9, 18] ranging from 9 to 18 years. Each
child has four growth velocity curves, each corresponding
to a different body part. The peaks represent the moment
of maximal rate of growth and can be used as a crude mea-
sure of the timing of pubertal growth spurt for that modal-
ity. For ease of viewing, we mark these locations in time
with vertical lines in Figure 1.
A key observation is to recognize that regardless of when

the child underwent puberty, the ordering of the spurts is
consistent: legs undergo their growth spurts first, then arm
length and standing height roughly together, followed by
sitting height. This pattern in pubertal spurts was briefly
discussed in the descriptive growth studies of Sheehy et al.
(1999) and suggests that there is a population-wide mutual
component warping occurring across the four modalities.
Note also that the time differences between modalities are
relatively consistent across children, despite individual dif-
ferences in the age of the pubertal onset. This is worth
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F IGURE 1 Three children’s growth velocities for standing height (black, solid), sitting height (red, dashed), leg length (green, dot-dashed),
and arm length (blue, dotted). Peak velocity positions are marked with vertical lines and can be used as rough markers of pubertal onset for
each modality

highlighting for two reasons: (a) it motivates the estima-
tion of a fixed population-wide set of shift parameters,
and (b) it shows that cross-component registration makes
sense even in the presence of subject-specific time warp-
ing, which is the usual mode of warping considered in
univariate functional data. Subject-specific registration is
a complex and varied field and we do not attempt to pro-
vide a comprehensive review here; for a recent overview of
traditional warpingmethods, we refer less familiar readers
to Marron et al. (2015) and Wang et al. (2016).
To register these curves across components, we propose

a shift-warping model, which provides a simple and inter-
pretablemethod for cross-component alignment of growth
data. From a methodological point of view, our approach
builds on basic ideas in the literature on parametric and
semi-parametric modeling of growth and related phenom-
ena. In applied work on human growth, empirical stud-
ies often utilize parametric models (Milani, 2000). One of
the most popular classes of models has been proposed by
Preece and Baines (1978); for a recent application, see, for
example, Banik et al. (2017). All of these models make use
of shift parameters 𝜃𝑖𝑗 to capture the main differences in
individual timings. For 𝑝-dimensional multivariate func-
tional data, {𝑋𝑖1(𝑡), … , 𝑋𝑖𝑝(𝑡)}

𝑇 , 𝑖 = 1, … , 𝑛, which we con-
sider here on a domain  that covers the pubertal period,
an extension of the existingmodels to themultivariate case
is as follows.
For some function 𝐺 and some additional parameter

vectors 𝝃𝑖𝑗 one posits that, with time shifts 𝜃𝑖𝑗 , the growth
curve for the 𝑗th component of the 𝑖th subject has the form

𝑋𝑖𝑗(𝑡) = 𝐺(𝝃𝑖𝑗, 𝑡 − 𝜃𝑖𝑗), 𝑗 = 1, … , 𝑝, 𝑖 = 1, … , 𝑛, 𝑡 ∈ ,
(1)

where previously only cases with 𝑝 = 1 have been con-
sidered. As fully parametric specifications were found to

lack accuracy, various semi-parametric extensions have
been proposed for the one-dimensional case. For example,
for standing height, in the case 𝑝 = 1, Kneip and Gasser
(1995) assumed a shape-invariant model with 𝐺(𝝃𝑖𝑗, 𝑡 −

𝜃𝑖𝑗) = 𝜉𝑖𝑗;2𝑓{𝜉𝑖𝑗;1(𝑡 − 𝜃𝑖𝑗)} + 𝜉𝑖𝑗;3 for real-valued parame-
ters 𝜉𝑖𝑗;1, 𝜉𝑖𝑗;2, 𝜉𝑖𝑗;3, and an unknown real-valued function
𝑓 that is estimated from the data. The 𝑘-mean alignment
introduced by Sangalli et al. (2010) may be seen as a gen-
eralization of this framework, where it is assumed that
the population can be decomposed into 𝐾 disjoint clus-
ters, and individual functions belonging to each cluster can
be approximately described by a shape-invariant model
with respect to a cluster-specific template function 𝑓𝑔, 𝑔 ∈
{1, … , 𝐾}.
In the following, we assume that growth data follow

a multivariate and flexible version of models of type (1),
under the natural assumption that the shift parameters 𝜃𝑖𝑗
can be decomposed in the form 𝜃𝑖𝑗 = 𝜃𝑖 + 𝜃𝑗 , where 𝜃𝑖 is
specific for the individual, while 𝜃𝑗 is specific for the com-
ponent. Then (1) may be rewritten in the form

𝑋𝑖𝑗(𝑡) = 𝐺(𝝃𝑖𝑗, 𝑡 − 𝜃𝑖 − 𝜃𝑗) ≡ 𝐺∗(𝝃∗
𝑖𝑗
, 𝑡 − 𝜃𝑗),

where 𝝃∗
𝑖𝑗
= (𝝃𝑖𝑗, 𝜃𝑖). (2)

Motivating our alignment procedure is that, for a given
individual 𝑖, the component functions 𝑋𝑖1(𝑡), … , 𝑋𝑖𝑝(𝑡)

can be made more similar when removing the different
shift parameters 𝜃1, … , 𝜃𝑝. The most favorable situation
arises if shifts constitute the only important difference
between components such that 𝝃𝑖𝑗 ≡ 𝝃𝑖 is indepen-
dent of 𝑗 = 1,… , 𝑝. Then with 𝑍𝑖(𝑠) ∶= 𝐺∗(𝝃∗

𝑖
, 𝑠) we

arrive at

𝑋𝑖𝑗(𝑡) = 𝑍𝑖(𝑡 − 𝜃𝑗), 𝑗 = 1,… , 𝑝, 𝑖 = 1, … , 𝑛, 𝑡 ∈ ,
(3)
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so that 𝐸 ∫{𝑋𝑖𝑗(𝑡 + 𝜃𝑗) − 𝑋𝑖𝑙(𝑡 + 𝜃𝑙)}
2𝑑𝑡 = 𝐸 ∫{𝑍𝑖(𝑡) −

𝑍𝑖(𝑡)}
2𝑑𝑡 = 0 for all 𝑗, 𝑙 ∈ {1, … , 𝑝}; to apply this argument

will require some preprocessing in order to eliminate
scale differences between the different components (see
Section 5).
In the context of growth curves, subject-specific align-

ment based on nonparametric monotonic warping func-
tions ℎ𝑖 ∶  →  has been studied extensively (Gasser
et al., 1990; Kneip and Gasser, 1995; Gervini and Gasser,
2004; Tang and Müller, 2008). Higher dimensional prob-
lems of subject-specific registration have been considered
through the lens of elastic shape analysis (Srivastava et al.,
2010; Srivastava andKlassen, 2016), or reduced to the prob-
lem of aligning a univariate curve generated from the com-
ponent curves (Ramsay et al., 2014). It can be seen from
(2) and (3) that in our context such functions ℎ𝑖 do not
play any role and may simply be part of the parameter
set 𝝃𝑖 . We therefore emphasize that in the nontraditional
warping framework presented here, the pertinent issues
are fundamentally different from those considered in the
subject-specific warping framework discussed in the cited
articles. In short, that it bypasses dealing with individual
warping functions is a strength of our method and allows
us to side-step the identifiability problems associated with
subject-specific registration. A more detailed discussion of
this matter in the context of the Zürich data can be found
in the Supplement.
It is especially noteworthy that we obtain a

√
𝑛-rate of

convergence for the estimated time shifts to their targets
under mild regularity conditions (see Section 7). Such fast
convergence rates cannot be obtained in traditional warp-
ing approaches, as these focus on individual warps rather
than component-specific warping and therefore require
identification of 𝑛 time alignments, where 𝑛 is the sam-
ple size, whereas in our approach there are only 𝑝 com-
ponents that need to be considered, where 𝑝 is the fixed
dimension of the multivariate process. Of course, in some
circumstances the model in (3) may just serve as a conve-
nient approximation of a more nuanced warping relation
between components. We discuss the potential for con-
tinuous analogues of cross-component shift-warping tech-
niques in the Concluding Remarks.
A further distinction between cross-component warp-

ing as proposed here and the common subject-specific
approach is that the latter traditionally views the presence
of individual warping functions as a nuisance characteris-
tic of the data to be accounted for in order to correctly ana-
lyze underlying functional features of interest; for exam-
ple, curves will be registered first before conducting a
functional principal component analysis (FPCA). In con-
trast, we argue that cross-component warping and the shift
parameters 𝜃1, … , 𝜃𝑝 provide insight into inter-component

relationships and, when applicable, are an essential aspect
of multivariate functional data that is of genuine interest
rather than a nuisance.

3 BIVARIATE CROSS-COMPONENT
REGISTRATION

3.1 Pairwise-shift estimation

We introduce here the main idea of registering differ-
ent component times across modalities, which we call
Cross-Component Registration (XCR). As explained in the
previous section, XCR differs in key aspects from tradi-
tional warping, which is also known as curve registra-
tion or alignment (Kneip and Gasser, 1992; Silverman,
1995; Ramsay and Silverman, 2005), as it aims at a situa-
tion where the component curves of a multivariate func-
tional process are time-shifted versions of one another. A
major difference is that instead of estimating 𝑛 individ-
ual warping functions, which align curves across subjects
and the determination of which is the goal of traditional
curve warping methods, our new approach targets a 𝑝-
vector of shift parameters for the case of 𝑝-dimensional
functional data. These component-wise shifts are then
applied uniformly across all subjects to mutually align the
component curves.
In the following, we write (𝑋1, … , 𝑋𝑝)

𝑇 to repre-
sent the generic underlying multivariate process and
{𝑋𝑖1(𝑡), … , 𝑋𝑖𝑝(𝑡)}

𝑇, 𝑖 = 1, … , 𝑛, for a sample of realiza-
tions of the functional vector. One may assume a priori
smoothness of curves or may preprocess the data with a
smoothing method if the curves are subject to measure-
ment error. In this subsection, we consider the case of
multivariate functional data with just 𝑝 = 2 component
curves to introduce the main ideas, and will then discuss
the extension to 𝑝 > 2. To fix the idea, consider a sample
of bivariate functional processes, writing {𝑋𝑖1(𝑡), 𝑋𝑖2(𝑡)}

𝑛
𝑖=1

for the observed independent and identically distributed
realizations of the bivariate process (𝑋1, 𝑋2), and assume
that the domain of both component processes is a com-
pact interval  = [0, 𝑇]. As a criterion for alignment and
to determine the optimal shift, we aim tominimize the2-
distance between functions on a subinterval  ⊂  ; see the
discussion below. Using a simple shift-warp family under
the 2-norm allows for a straightforward and clear inter-
pretation of the relationship between two components and
has been used previously in the context of shape-invariant
modeling (Härdle and Marron, 1990; Kneip and Gasser,
1995; Silverman, 1995).
Specifically, we aim for the optimal value of the param-

eter 𝜏, the pairwise cross-component (XC) shift as the
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minimizer of

Λ(𝜏) = 𝐸 ∫{𝑋1(𝑡) − 𝑋2(𝑡 − 𝜏)}2𝑑𝑡, (4)

with associated sample version

𝐿𝑛(𝜏) =
1

𝑛

𝑛∑
𝑖=1

∫{𝑋𝑖1(𝑡) − 𝑋𝑖2(𝑡 − 𝜏)}2𝑑𝑡 (5)

and sample-based shift parameter estimate

𝜏̂ = argmin
𝜏

𝐿𝑛(𝜏), (6)

targeting 𝜏0 = argmin𝜏 Λ(𝜏).
Integrating over a subinterval  rather than the whole

interval is a device that is necessary in order to ensure
that both the shifted and unshifted curves are defined
on the domain of integration. If we did not specify a
suitable subinterval  ⊂ [0, 𝑇] that stays away from both
0 and 𝑇, shifting a curve forward or backward may
result in a subinterval of integration in which one of
the curves is defined while the other is not, making it
impossible to compute their2-distance. To be precise, we
partition the data domain  into three disjoint intervals
 = 𝑅1 ∪  ∪ 𝑅2, where  = [𝑟1, 𝑟2] is the subinterval
of integration and 𝑅1 = [0, 𝑟1) and 𝑅2 = (𝑟2, 𝑇] are the
remaining intervals on the boundary. Note that this
partitioning implies that the magnitude of pairwise shift
estimates cannot exceed the length of the relevant remain-
der interval, depending on the direction of the shift. This
subtlety suggests that the choice of subinterval of inte-
gration  is not trivial and should be done carefully and
data-adaptively.

3.2 Subinterval selection

We propose the following guidelines for subinterval selec-
tion:  should be chosen to (a) include the critical fea-
tures of the sample curves, and (b) avoid censoring esti-
mates of pairwise shifts. For example, in our application
to the Zürich data, we choose  to range from the earli-
est age of pubertal onset to the age of adulthood. Doing so
ensures the inclusion of the main pubertal growth spurt
peaks that are the structural features to be aligned across
components (Gasser and Kneip, 1995). Unreasonable esti-
mates may occur if the subinterval is too small, as an inap-
propriately narrow window may discard the features to be
aligned for a subset of individuals.
The problem of subinterval selection was discussed

previously in Kneip and Gasser (1995) and we follow their
convention to seek an “overlapping interval” across all

individuals, described as follows. Individual intervals
𝑖 are chosen such that information about structural
landmarks for the 𝑖th individual are contained entirely
in 𝑖 . Then the overlapping interval  is defined as
 = ∪𝑖𝑖 and guarantees that all individuals’ structural
features are included. One can then either simply use this
overlapping interval as the subinterval of integration, that
is, let  =  , or choose  such that  ⊂  and  has some
relevant physical meaning. An example for the latter case
is demonstrated in the data application of Section 5.
In the more general setting with more than two com-

ponents, we will encounter several pairwise time shifts
between sets of component curves. To distinguish between
these, we write 𝜏𝑗𝑘 to denote the relative time shift that
moves component 𝑘 to component 𝑗. Note that the sam-
ple and population time shifts are symmetric in the sense
that 𝜏𝑗𝑘 = −𝜏𝑘𝑗 . The problem of estimating general cross-
component shift parameters 𝜃1, … , 𝜃𝑝 can be solved after
the estimation of all of the pairwise shift parameters 𝜏𝑗𝑘
for 1 ≤ 𝑗 < 𝑘 ≤ 𝑝, as discussed in the following section.

4 GENERAL CROSS-COMPONENT
REGISTRATION

We now extend the methodology for bivariate XCR
to the case of 𝑝-dimensional multivariate functional
processes, aiming to align more than two component
functions. Assume we observe 𝑝-variate functional data
{𝑋𝑖1(𝑡), … , 𝑋𝑖𝑝(𝑡)}

𝑇 for 𝑖 = 1, … , 𝑛, now with 𝑝 > 2. We
search for a vector of global XC shifts, 𝜽 = (𝜃1, … , 𝜃𝑝), such
thatwhen eachmodality𝑋𝑗(𝑡), 𝑗 = 1,… , 𝑝, is shifted by 𝜃𝑗 ,
all 𝑝 curves are aligned. Here it is useful to introduce the
idea of an underlying latent process, which may be seen as
the 𝑍𝑖 component in model (3).
To fix the idea, consider only a single observation of

simulated multivariate functional data where the compo-
nents of themultivariate process are just time-shifted repli-
cates. Figure 2 illustrates an example for 𝑝 = 4. A simple
approachwould be to align the component curves by fixing
one component curve and shifting the others via bivariate
XCR to align themwith the selected component. However,
a major problem with this approach is that the resulting
XC shifts depend on the choice of the fixed component.
These problems can be overcome by assuming that each

curve is a shifted version of an unobserved and unshifted
latent component, visualized as the solid curve in
Figure 2. The observed components are then time-shifted
with respect to this latent component and the shifts are
subject to the constraint

∑𝑝

𝑗=1 𝜃𝑗 = 0, so that there is
no net XC shift from the latent component curve. This
assumption is necessary for the identifiability of the shift
estimates.
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F IGURE 2 Observed components (dashed, left) and latent curve (solid, right) defined by identifiability constraint

A key observation is that there is a linear relationship
between pairwiseXC shifts, 𝜏𝑗𝑘, and the global XC shifts, 𝜃𝑗
and 𝜃𝑘. Specifically, the pairwise shifts can be expressed as
the difference of two global shifts as shown in Equation (7).
Thus, after estimating bivariate XC shifts 𝜏𝑗𝑘 between com-
ponent functions, we can infer the global XC vector 𝜽, and
importantly, the linear map between the two is invariant
with respect to the choice of the latent process.
More explicitly, the linear map 𝐿 is given by

𝜏𝑗𝑘 = 𝜃𝑗 − 𝜃𝑘, 𝑗, 𝑘 = 1,… , 𝑝, 𝑗 < 𝑘 (7)

with constraint
∑𝑝

𝑗=1 𝜃𝑗 = 0, so that

𝝉∗ = 𝐿(𝜽) = 𝐀𝜽, (8)

where 𝝉∗ = (𝝉𝑇, 0)𝑇 = (𝜏12, 𝜏13, … , 𝜏(𝑝−1)𝑝, 0)
𝑇 is the

pairwise shift parameter vector stacked with 0,
𝜽 = (𝜃1, … , 𝜃𝑝)

𝑇 is the global shift vector of each compo-
nent function with respect to the latent process, and 𝐀 is
the matrix of the linear map that corresponds to the con-
trasts in (8). Note that 𝐀 is of dimension (𝑝(𝑝 − 1)∕2) × 𝑝,
and is always of full column rank. Explicitly, we write

𝐀 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 0 0 … 0 0

1 0 −1 0 0 … 0 0

1 0 0 −1 0 … 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

1 0 0 0 0 … 0 −1

0 1 −1 0 0 … 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 0 0 … 1 −1

1 1 1 1 1 … 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

To implement this approach, we must first estimate
the stacked vector of bivariate XC shifts, 𝝉̂∗ = (𝝉̂𝑇, 0)𝑇 =

(𝜏̂12, 𝜏̂13, … , 𝜏̂(𝑝−1)𝑝, 0)
𝑇 , leading to the model

𝝉̂∗ = 𝐀𝜽 + 𝜀, (9)

where 𝜀 is a vector of random noise with mean 0 and finite
variance. Once the pairwise shifts 𝜏̂𝑗𝑘 are obtained, global
shifts 𝜽 can be estimated as

𝜽 = (𝐀𝑇𝐀)−1𝐀𝑇𝝉̂∗ (10)

by ordinary least squares. The 𝑝 component curves will
then be aligned (to the latent curve) once they are time-
shifted with their respective estimated global XC shifts,
that is, 𝑋𝑖𝑗(𝑡 + 𝜃̂𝑗) for 𝑗 = 1,… , 𝑝.

5 APPLICATION TO THE ZÜRICH
LONGITUDINAL GROWTH STUDY

From 1954 to 1978, a longitudinal study on human growth
and development was conducted at the University Chil-
dren’s Hospital in Zürich. Modalities of growth that were
longitudinally measured on a dense regular time grid
include standing height, sitting height, arm length, and
leg length, so that the resulting data can be naturally
viewed as multivariate functional data (Gasser et al., 1984;
1989). The raw trajectories of the 𝑝 = 4 component pro-
cesses for the children measured are displayed in Figure 3,
which also indicates the measurement grid. Component
curves are initially observed on the domain  = [0, 20],
which can be artificially extended to the right by assuming
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F IGURE 3 Raw growth trajectories for all Zürich boys

measurements stay constant in adulthood, as almost all
subjects reach full maturation before age 20.
We are especially interested in the timing of pubertal

growth spurts, which occur for all individuals between
ages 9 and 18 typically. We are using this time window as
the subinterval of integration, , in accordance with the
guidelines of Section 3. A common way to study growth
velocities is to examine the derivatives of the growth curves
instead of the curves themselves (Gasser et al., 1984). The
growth velocities have a peak during puberty,with the apex
representing the instant when an individual’s growth rate

is at its maximum. Previous analysis of human growth
curves indicates that there is a difference in the ways
that boys and girls undergo puberty (Gasser et al., 1984;
Eiben et al., 2005). For example, it is widely known that
girls begin puberty at younger ages than boys do on aver-
age. Accordingly, for the subsequent analysis we sepa-
rate boys and girls and for brevity display only the results
for boys. We estimate the growth velocities, that is, the
derivatives of the growth trajectories, via local weighted
least squares using the package fdapace (Carroll et al.,
2020).
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F IGURE 4 Scaled growth velocity curves for Zürich boys

Because different body parts have different physical
sizes, their velocities are also on different scales. We elim-
inate the majority of this amplitude variation by dividing
each function by the total area under the curve, resulting
in “relative velocities” for each modality. Relative veloci-
ties have been previously used in the growth curve litera-
ture (see, for example, Sheehy et al. (1999)) and allow for
the comparison of modalities that are on dissimilar scales.
Figure 4 shows the rescaled derivative estimates for the
four growth processes that we consider. After this prepro-
cessing, we now have multivariate functional data with
component functions such as those shown for the individ-
uals in Figure 1. When we apply the proposed shift model
to the growth velocities of the four growthmodalities of the
Zürich data, we obtain the following estimated global XC
shifts (Table 1).
One can interpret these shift parameters in a pair-

wise manner. For example, legs tend to undergo their
growth spurts roughly half a year before arms do

TABLE 1 Estimated global XC shifts for Zürich boys

Component Modality Estimate
𝜃1 Height −0.0875
𝜃2 Sitting height −0.5850
𝜃3 Leg length 0.5825
𝜃4 Arm length 0.0900

Note. These estimates imply the following ordering of growth spurts: (1) leg,
(2) height, (3) arm, (4) sitting height.

(𝜏̂34 = 𝜃3 − 𝜃4 ≈ 0.5) and sitting height trails roughly half
a year behind standing height (𝜏̂21 = 𝜃2 − 𝜃1 ≈ −0.5). Our
shift estimates and their implied order of growth spurts is
consistent with what is known about human growth pat-
terns, as discussed in the descriptive longitudinal studies
of Cameron et al. (1982) and Sheehy et al. (1999).
We next investigate some individuals before and after

component alignment for a demonstration of how XC
alignment affects the curves. Figure 5 (top) shows three



CARROLL et al. 9

F IGURE 5 Well-aligned (top) and poorly aligned individuals (bottom) after component alignment. Growthmodalities are standing height
(black, solid), sitting height (red, dashed), leg length (green, dot-dashed), and arm length (blue, dotted)

individuals who are representative of the “average”
ordering of growth spurts across modalities, whereas
Figure 5 (bottom) displays those who generally went
through pubertal spurts for whom the different body parts
were already in sync before alignment. Individuals like

those shown in Figure 5 (bottom) for whom alignment
moved component curves further away from each other
were very rare, and it was common for most individuals to
have reduced 2-distance between the component curves
after alignment.
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F IGURE 6 Kernel density estimate of the decrease in total 2-
distance after performing XCR. The dashed line indicates no change

To illustrate this further, we use the total cross-
component 2-distance (XD) for an individual as a func-
tion of 𝜽,

XD𝑖(𝜽) =
∑
𝑗<𝑘

∫{𝑋𝑖𝑗(𝑡 + 𝜃𝑗) − 𝑋𝑖𝑘(𝑡 + 𝜃𝑘)}
2𝑑𝑡, (11)

noting that under a perfect model fit we would
have 𝑋𝑖𝑗(𝑡 + 𝜃𝑗) = 𝑍𝑖(𝑡) for all 𝑗 = 1,… , 𝑝, and
XD𝑖(𝜽) =

∑
𝑗<𝑘

∫{𝑍𝑖(𝑡) − 𝑍𝑖(𝑡)}
2𝑑𝑡 = 0. Figure 6 displays

the distribution of the difference in total cross-component
2-distance before and after shifting, for example,
XD𝑖(𝟎)−XD𝑖(𝜽). Here it is noteworthy that implementing
component alignment reduced total 2-distance in the
sample by about 40%.

6 SIMULATION STUDY

We demonstrate here the superior fit of curves aligned
by XCR prior to analysis through FPCA. We use the base

curve 𝑍(𝑡) = 20 − .5𝑡 + 30𝑒
−
(𝑡−25)2

72 on 𝑡 ∈  = [0, 50] as
the underlying process dictating the common shape of the
component curves and set 𝜽 = (−5,−2.5, 2.5, 5) and  =

[10, 40]. We contaminate the curves with functional noise,
measurement error, and noisy shift parameters by generat-
ing contaminated component curves

𝑋𝑖𝑗(𝑡𝑘) = 𝑋𝑗(𝑡𝑘 − 𝜃𝑗 + 𝜂𝑖𝑗) + 𝜁𝑖𝑗 sin

(
𝜋𝑡𝑘
5

)
+ 𝑒𝑖𝑗𝑘, (12)

where 𝜂𝑖𝑗
iid
∼  (0, 𝜎2𝜂), 𝜁𝑖𝑗

iid
∼  (0, 𝜎2

𝜁
), 𝑒𝑖𝑗𝑘

iid
∼  (0, 1), and

𝑘 indexes the points on the data grid spanning  by
increments of 0.5. Here the noise on the time domain

TABLE 2 Average percentage decrease in IMSE after
implementing XCR at various levels of contamination on the time
(𝜎2𝜂) and functional (𝜎2𝜁) domains

Noise level 𝝈𝟐
𝜼 = 𝟎.𝟏 𝝈𝟐

𝜼 = 𝟎.𝟐𝟓 𝝈𝟐
𝜼 = 𝟎.𝟓 𝝈𝟐

𝜼 = 𝟏 𝝈𝟐
𝜼 = 𝟐

𝜎2
𝜁
= 25 48.38 50.92 51.39 44.11 16.17

𝜎2
𝜁
= 64 48.17 50.81 51.46 43.75 16.64

𝜎2
𝜁
= 100 48.06 50.72 51.37 43.87 16.42

is introduced through 𝜂𝑖𝑗 , while noise on the functional
domain is controlled through 𝜁𝑖𝑗 and 𝑒𝑖𝑗𝑘, which corre-
spond to a randomamplitude sinewave andminor additive
measurement error, respectively.
One can consider each of the component curves as a

single noisy warped realization of the underlying latent
curve 𝑍. We may try to estimate the latent curve by view-
ing the component processes for all subjects as a noisy
sample of 𝑍 and applying an established method such as
FPCA. We expect that failing to account for the compo-
nent warping will inflate variances and result in a subop-
timal fit, as the cross-component warping masks the fea-
tures of 𝑍, and this is indeed what the following simula-
tions show. A sample of𝑁 = 100 curves were fit via FPCA
using the first two eigenfunctions, both with and without
incorporating XCR.When incorporating XCR, curves were
first generated and used to estimate XC shifts, whereupon
components were shifted according to these estimates, fol-
lowed by an FPCA step applied to the thus aligned curves.
The first two eigenfunctions were used to fit the sample
of aligned curves, and after this fitting step the curves
were shifted back to their original domains through the
estimated shifts. To quantify the advantage of incorporat-
ing XCR, we obtained the integrated mean squared error
for both approaches. The benefit of including XCR for
various noise scenarios was measured through the per-
centage decrease in integrated mean squared error for
the sample.
This process was performed 𝐵 = 1000 times under

low, medium, and high functional noise settings
(𝜎2

𝜁
= 25, 64, 100), while letting the noise on the

time domain start low and increase until it was on the
same scale as the shifts themselves. Table 2 shows the
average percentage decreases across replications for
various settings. The improvements in fit are relatively
consistent across functional noise levels. It is noteworthy
to observe that once the noise on the domain becomes
comparable to that of the shifts themselves (ie, 𝜎2𝜂 > 0.5),
the advantage of XCR starts to decrease. It conforms with
expectations that when the within-subject time ordering
is highly noise-contaminated, the benefits of performing
XCR are lost. At such high shift noise levels there would
be little incentive to perform XCR, as exploratory data
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F IGURE 7 Differences in fit when using just naive FPCA (dashed, left) and FPCA and XCR together (dot-dashed, right), when 𝜎2𝜂 =

0.25, 𝜎2
𝜁
= 25. Solid lines represent the original data

inspection would not likely indicate the presence of any
systematic cross-component warping.
A visual comparison of performance for the two

approaches can be seen for an example set of curves in Fig-
ure 7. Unmodified FPCA is ill-suited to account for sources
of horizontal variation, like shift warping, as its eigenfunc-
tions and their scores are geared toward representing ver-
tical variation. In the presence of this horizontal variation,
the estimated FPC scores then tend to over- or underes-
timate the actual amplitude variation, especially near the
peaks, as seen in the left side of Figure 7. By accounting
for component warping with XCR, however, the burden
of modeling time domain variation is lifted from FPCA,
which can then focus on amplitude variability without the
confounding phase noise. Another simulation study char-
acterizing finite sample performance at more noise levels
can be found in the Supplement.

7 THEORETICAL RESULTS

For bivariate XCR, a key finding is that the centered pro-
cess

𝑍𝑛(𝜏) =
√
𝑛{𝐿𝑛(𝜏) − Λ(𝜏)}

converges weakly to a Gaussian limit process 𝑍(𝜏), where
𝐿𝑛, Λ are as in (4), (5). The details of this result are shown
in Lemma 1 of the Supplement. To show weak conver-
gence of the pairwise estimate 𝜏̂ as defined in (6), we
require the following assumptions on Λ where d denotes
1-distance.

(P1) For any 𝜀 > 0, inf
𝜏∶𝑑(𝜏,𝜏0)>𝜀

Λ(𝜏) < Λ(𝜏0).

(P2) There exists 𝜂 > 0, 𝐶 > 0 and 𝛽 > 1, such that, when
𝑑(𝜏, 𝜏0) < 𝜂, we have

Λ(𝜏) − Λ(𝜏0) ≥ 𝐶𝑑(𝜏, 𝜏0)
𝛽.

Assumption (P1) ensures that there exists a well-defined
minimum, and assumption (P2) describes the local curva-
ture of Λ at the true minimum 𝜏0, compare, for example,
Petersen and Müller (2016). We also require the following
assumptions for the observed random processes.

(A1) 𝑋𝑗(𝑡) is continuously twice differentiable for 𝑗 =

1,… , 𝑝,
(A2) 𝐸{∫ 𝑋4

𝑗
(𝑡)𝑑𝑡} < ∞, for 𝑗 = 1,… , 𝑝,

(A3) 𝐸{∫ 𝑋′4
𝑗
(𝑡)𝑑𝑡} < ∞, for 𝑗 = 1,… , 𝑝.

These assumptions are standard in the literature. They
were, for example, previously stipulated in Hall and
Horowitz (2007) and enable us to obtain asymptotic covari-
ance matrices for our estimates and to derive some crucial
bounds.

Theorem 1. In the bivariate case, under assumptions (P1)-
(P2), and (A1)-(A3), we have

𝜏̂ − 𝜏0 = 𝑂𝑝(𝑛
−1∕2(𝛽−1)).

In particular, when 𝛽 = 2, the sequence
√
𝑛(𝜏̂ − 𝜏0) is

asymptotically normal with mean zero and variance 𝑉 =

4 ∫ 𝐸[{𝑋1(𝑡) − 𝑋2(𝑡 − 𝜏0)}𝑋
′

2(𝑡 − 𝜏0)]
2𝑑𝑡∕{Λ

′′
(𝜏0)}

2 where
Λ(𝜏) = 𝐸 ∫{𝑋1(𝑡) − 𝑋2(𝑡 − 𝜏)}2𝑑𝑡.

The proof is in the Supplement and utilizes results for
𝑀-estimators (Jain and Marcus, 1975; Van der Vaart and
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Wellner, 1996; van der Vaart, 1998). We note that when the
local geometry around the minimum has a quadratic cur-
vature, that is, when 𝛽 = 2, one obtains the parametric rate
𝑛1∕2.
Our main result for general XCR concerns the rate of

convergence of the estimated global shift vector and its
asymptotic distribution, as follows.

Theorem 2. In the general case, under assumptions (P1)-
(P2) and (A1)-(A3)

𝜽 − 𝜽0 = 𝑂𝑝(𝑛
−1∕2(𝛽−1)).

In particular, when 𝛽 = 2, the sequence
√
𝑛(𝜽 − 𝜽0) is

asymptotically normal with mean zero and covariance
matrix

𝚺𝑝 =
1

𝑝2
𝑨𝑇

[
𝑽−1
𝝉0
𝐸
(
∇𝒎𝝉0∇𝒎

𝑇
𝝉0

)
𝑽−1
𝝉0

0

0 0

]
𝑨,

where 𝒎𝜏0 = {𝐿𝑛(𝜏12), 𝐿𝑛(𝜏13), … , 𝐿𝑛(𝜏(𝑝−1)𝑝)}
𝑇 and 𝑽𝜏0 is

the Hessian of 𝚲(𝝉) = 𝐸(𝒎𝝉) evaluated at 𝝉0.

8 CONCLUDING REMARKS

Cross-component registration seeks to address mutual
component time warping that is often an issue for mul-
tivariate functional data arising from longitudinal stud-
ies in the biosciences. This issue does not manifest itself
for univariate functional data. By focusing on time warp-
ing across components, and not on the traditional time
warping between individual subjects, we are able to esti-
mate population-wide time shift parameterswith fast para-
metric rates of convergence and obtain a limit distribution
under suitable assumptions.
This new cross-component timewarping approach leads

to insights about the relative timings of the component pro-
cesses, which is of interest for the analysis of growth data
and also other multivariate longitudinal data. After cross-
component shift warps have been identified and incorpo-
rated into the model, commonmethods such as functional
principal component analysis for multivariate processes
can be expected to lead to more meaningful outputs and
the resulting principal component scores can be used for
subsequent downstream analysis. The identification and
estimation of the underlying latent process may also lead
to a more parsimonious representation and is of interest
in itself.
There are limitations of the framework we have estab-

lished here. Although the shift-warping model we develop
in this paper is appropriate for certain applications such
as the Zürich Longitudinal Growth Study, the cross-
component warping phenomena need not be restricted to

shifts in general and may emerge in the form of nonlinear
distortions among components. Using the shift-warping
methodology in such a situationmay ormaynot yield satis-
factory results, depending on the nature of the actual time
warping. If the warp has a simple structure, a shift param-
eter may be a sufficient and parsimonious way to discover
and approximate the component time relations, especially
for practitioners who seek clear and concise interpreta-
tions. However, the situation formore pronounced or com-
plicated warps is less auspicious. When the data at hand
exhibit complex component warping beyond shifts, a more
flexible warping paradigm should be adopted. The non-
linearity of such cross-component distortions may suggest
that such problemswarrant an alternativemetric to the2-
norm.
In spite of this, we argue that the limitations of a shift-

warping model are not necessarily tied to the general idea
of cross-component registration that we have presented
here. Although in this paper we have used a shift-warping
model to introduce the notion of cross-component reg-
istration, one can imagine more flexible extensions. The
study of nonlinear warpingmodels in XCR is left for future
research. Other potential directions of interest concern
alternative representations of the cross-component warp-
ing problem.
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